3.8.53 \(\int \frac {1}{\sqrt {x} (a+c x^4)^2} \, dx\) [753]

Optimal. Leaf size=308 \[ \frac {\sqrt {x}}{4 a \left (a+c x^4\right )}-\frac {7 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}-\frac {7 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}} \]

[Out]

7/16*arctan(c^(1/8)*x^(1/2)/(-a)^(1/8))/(-a)^(15/8)/c^(1/8)+7/16*arctanh(c^(1/8)*x^(1/2)/(-a)^(1/8))/(-a)^(15/
8)/c^(1/8)+7/32*arctan(-1+c^(1/8)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(15/8)/c^(1/8)*2^(1/2)+7/32*arctan(1+c^(1/8
)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(15/8)/c^(1/8)*2^(1/2)-7/64*ln((-a)^(1/4)+c^(1/4)*x-(-a)^(1/8)*c^(1/8)*2^(1
/2)*x^(1/2))/(-a)^(15/8)/c^(1/8)*2^(1/2)+7/64*ln((-a)^(1/4)+c^(1/4)*x+(-a)^(1/8)*c^(1/8)*2^(1/2)*x^(1/2))/(-a)
^(15/8)/c^(1/8)*2^(1/2)+1/4*x^(1/2)/a/(c*x^4+a)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 308, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.800, Rules used = {296, 335, 220, 218, 214, 211, 217, 1179, 642, 1176, 631, 210} \begin {gather*} -\frac {7 \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \text {ArcTan}\left (\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}+1\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \text {ArcTan}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}+\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}-\frac {7 \log \left (-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \log \left (\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*(a + c*x^4)^2),x]

[Out]

Sqrt[x]/(4*a*(a + c*x^4)) - (7*ArcTan[1 - (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(16*Sqrt[2]*(-a)^(15/8)*c^(1/
8)) + (7*ArcTan[1 + (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(16*Sqrt[2]*(-a)^(15/8)*c^(1/8)) + (7*ArcTan[(c^(1/
8)*Sqrt[x])/(-a)^(1/8)])/(16*(-a)^(15/8)*c^(1/8)) + (7*ArcTanh[(c^(1/8)*Sqrt[x])/(-a)^(1/8)])/(16*(-a)^(15/8)*
c^(1/8)) - (7*Log[(-a)^(1/4) - Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x])/(32*Sqrt[2]*(-a)^(15/8)*c^(1/8
)) + (7*Log[(-a)^(1/4) + Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x])/(32*Sqrt[2]*(-a)^(15/8)*c^(1/8))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 220

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]
}, Dist[r/(2*a), Int[1/(r - s*x^(n/2)), x], x] + Dist[r/(2*a), Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a, b},
 x] && IGtQ[n/4, 1] &&  !GtQ[a/b, 0]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {x} \left (a+c x^4\right )^2} \, dx &=\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}+\frac {7 \int \frac {1}{\sqrt {x} \left (a+c x^4\right )} \, dx}{8 a}\\ &=\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}+\frac {7 \text {Subst}\left (\int \frac {1}{a+c x^8} \, dx,x,\sqrt {x}\right )}{4 a}\\ &=\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}+\frac {7 \text {Subst}\left (\int \frac {1}{\sqrt {-a}-\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{8 (-a)^{3/2}}+\frac {7 \text {Subst}\left (\int \frac {1}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{8 (-a)^{3/2}}\\ &=\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}+\frac {7 \text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}-\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{16 (-a)^{7/4}}+\frac {7 \text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}+\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{16 (-a)^{7/4}}+\frac {7 \text {Subst}\left (\int \frac {\sqrt [4]{-a}-\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{16 (-a)^{7/4}}+\frac {7 \text {Subst}\left (\int \frac {\sqrt [4]{-a}+\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{16 (-a)^{7/4}}\\ &=\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}+\frac {7 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{32 (-a)^{7/4} \sqrt [4]{c}}+\frac {7 \text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{32 (-a)^{7/4} \sqrt [4]{c}}-\frac {7 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}+2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}-\frac {7 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}-2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}\\ &=\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}+\frac {7 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}-\frac {7 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}-\frac {7 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}\\ &=\frac {\sqrt {x}}{4 a \left (a+c x^4\right )}-\frac {7 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{15/8} \sqrt [8]{c}}-\frac {7 \log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}+\frac {7 \log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{15/8} \sqrt [8]{c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.19, size = 277, normalized size = 0.90 \begin {gather*} \frac {\frac {8 a^{7/8} \sqrt {x}}{a+c x^4}-\frac {7 \sqrt {2+\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt {1-\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{\sqrt [8]{c}}-\frac {7 \sqrt {2-\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt {1+\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{\sqrt [8]{c}}+\frac {7 \sqrt {2+\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt {2+\sqrt {2}} \sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{\sqrt [8]{c}}+\frac {7 \sqrt {2-\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [8]{a} \sqrt [8]{c} \sqrt {-\left (\left (-2+\sqrt {2}\right ) x\right )}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{\sqrt [8]{c}}}{32 a^{15/8}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*(a + c*x^4)^2),x]

[Out]

((8*a^(7/8)*Sqrt[x])/(a + c*x^4) - (7*Sqrt[2 + Sqrt[2]]*ArcTan[(Sqrt[1 - 1/Sqrt[2]]*(a^(1/4) - c^(1/4)*x))/(a^
(1/8)*c^(1/8)*Sqrt[x])])/c^(1/8) - (7*Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[1 + 1/Sqrt[2]]*(a^(1/4) - c^(1/4)*x))/(a^
(1/8)*c^(1/8)*Sqrt[x])])/c^(1/8) + (7*Sqrt[2 + Sqrt[2]]*ArcTanh[(Sqrt[2 + Sqrt[2]]*a^(1/8)*c^(1/8)*Sqrt[x])/(a
^(1/4) + c^(1/4)*x)])/c^(1/8) + (7*Sqrt[2 - Sqrt[2]]*ArcTanh[(a^(1/8)*c^(1/8)*Sqrt[-((-2 + Sqrt[2])*x)])/(a^(1
/4) + c^(1/4)*x)])/c^(1/8))/(32*a^(15/8))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.15, size = 50, normalized size = 0.16

method result size
derivativedivides \(\frac {\sqrt {x}}{4 a \left (x^{4} c +a \right )}+\frac {7 \left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}^{7}}\right )}{32 a c}\) \(50\)
default \(\frac {\sqrt {x}}{4 a \left (x^{4} c +a \right )}+\frac {7 \left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}^{7}}\right )}{32 a c}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^4+a)^2/x^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4*x^(1/2)/a/(c*x^4+a)+7/32/a/c*sum(1/_R^7*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^2/x^(1/2),x, algorithm="maxima")

[Out]

-7*c*integrate(1/8*x^(7/2)/(a^2*c*x^4 + a^3), x) + 1/4*(7*c*x^(9/2) + 8*a*sqrt(x))/(a^2*c*x^4 + a^3)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 517 vs. \(2 (207) = 414\).
time = 0.40, size = 517, normalized size = 1.68 \begin {gather*} \frac {28 \, \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} \arctan \left (\sqrt {2} \sqrt {a^{4} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{4}} + \sqrt {2} a^{2} \sqrt {x} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} + x} a^{13} c \left (-\frac {1}{a^{15} c}\right )^{\frac {7}{8}} - \sqrt {2} a^{13} c \sqrt {x} \left (-\frac {1}{a^{15} c}\right )^{\frac {7}{8}} + 1\right ) + 28 \, \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} \arctan \left (\sqrt {2} \sqrt {a^{4} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{4}} - \sqrt {2} a^{2} \sqrt {x} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} + x} a^{13} c \left (-\frac {1}{a^{15} c}\right )^{\frac {7}{8}} - \sqrt {2} a^{13} c \sqrt {x} \left (-\frac {1}{a^{15} c}\right )^{\frac {7}{8}} - 1\right ) + 7 \, \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} \log \left (a^{4} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{4}} + \sqrt {2} a^{2} \sqrt {x} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} + x\right ) - 7 \, \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} \log \left (a^{4} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{4}} - \sqrt {2} a^{2} \sqrt {x} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} + x\right ) + 56 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} \arctan \left (\sqrt {a^{4} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{4}} + x} a^{13} c \left (-\frac {1}{a^{15} c}\right )^{\frac {7}{8}} - a^{13} c \sqrt {x} \left (-\frac {1}{a^{15} c}\right )^{\frac {7}{8}}\right ) + 14 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} \log \left (a^{2} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} + \sqrt {x}\right ) - 14 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} \log \left (-a^{2} \left (-\frac {1}{a^{15} c}\right )^{\frac {1}{8}} + \sqrt {x}\right ) + 16 \, \sqrt {x}}{64 \, {\left (a c x^{4} + a^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^2/x^(1/2),x, algorithm="fricas")

[Out]

1/64*(28*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^15*c))^(1/8)*arctan(sqrt(2)*sqrt(a^4*(-1/(a^15*c))^(1/4) + sqrt(2)*a^2
*sqrt(x)*(-1/(a^15*c))^(1/8) + x)*a^13*c*(-1/(a^15*c))^(7/8) - sqrt(2)*a^13*c*sqrt(x)*(-1/(a^15*c))^(7/8) + 1)
 + 28*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^15*c))^(1/8)*arctan(sqrt(2)*sqrt(a^4*(-1/(a^15*c))^(1/4) - sqrt(2)*a^2*sq
rt(x)*(-1/(a^15*c))^(1/8) + x)*a^13*c*(-1/(a^15*c))^(7/8) - sqrt(2)*a^13*c*sqrt(x)*(-1/(a^15*c))^(7/8) - 1) +
7*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^15*c))^(1/8)*log(a^4*(-1/(a^15*c))^(1/4) + sqrt(2)*a^2*sqrt(x)*(-1/(a^15*c))^
(1/8) + x) - 7*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^15*c))^(1/8)*log(a^4*(-1/(a^15*c))^(1/4) - sqrt(2)*a^2*sqrt(x)*(
-1/(a^15*c))^(1/8) + x) + 56*(a*c*x^4 + a^2)*(-1/(a^15*c))^(1/8)*arctan(sqrt(a^4*(-1/(a^15*c))^(1/4) + x)*a^13
*c*(-1/(a^15*c))^(7/8) - a^13*c*sqrt(x)*(-1/(a^15*c))^(7/8)) + 14*(a*c*x^4 + a^2)*(-1/(a^15*c))^(1/8)*log(a^2*
(-1/(a^15*c))^(1/8) + sqrt(x)) - 14*(a*c*x^4 + a^2)*(-1/(a^15*c))^(1/8)*log(-a^2*(-1/(a^15*c))^(1/8) + sqrt(x)
) + 16*sqrt(x))/(a*c*x^4 + a^2)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**4+a)**2/x**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 462 vs. \(2 (207) = 414\).
time = 0.83, size = 462, normalized size = 1.50 \begin {gather*} \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (-\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \arctan \left (-\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} - \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (-\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} - \frac {7 \, \left (\frac {a}{c}\right )^{\frac {1}{8}} \log \left (-\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} + \frac {\sqrt {x}}{4 \, {\left (c x^{4} + a\right )} a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^2/x^(1/2),x, algorithm="giac")

[Out]

7/16*(a/c)^(1/8)*arctan((sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + 2*sqrt(x))/(sqrt(sqrt(2) + 2)*(a/c)^(1/8)))/(a^2*sqr
t(-2*sqrt(2) + 4)) + 7/16*(a/c)^(1/8)*arctan(-(sqrt(-sqrt(2) + 2)*(a/c)^(1/8) - 2*sqrt(x))/(sqrt(sqrt(2) + 2)*
(a/c)^(1/8)))/(a^2*sqrt(-2*sqrt(2) + 4)) + 7/16*(a/c)^(1/8)*arctan((sqrt(sqrt(2) + 2)*(a/c)^(1/8) + 2*sqrt(x))
/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a^2*sqrt(2*sqrt(2) + 4)) + 7/16*(a/c)^(1/8)*arctan(-(sqrt(sqrt(2) + 2)*(a/
c)^(1/8) - 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a^2*sqrt(2*sqrt(2) + 4)) + 7/32*(a/c)^(1/8)*log(sqrt(
x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(-2*sqrt(2) + 4)) - 7/32*(a/c)^(1/8)*log(-sqrt(x)
*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(-2*sqrt(2) + 4)) + 7/32*(a/c)^(1/8)*log(sqrt(x)*sq
rt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(2*sqrt(2) + 4)) - 7/32*(a/c)^(1/8)*log(-sqrt(x)*sqrt
(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(2*sqrt(2) + 4)) + 1/4*sqrt(x)/((c*x^4 + a)*a)

________________________________________________________________________________________

Mupad [B]
time = 0.13, size = 135, normalized size = 0.44 \begin {gather*} \frac {\sqrt {x}}{4\,a\,\left (c\,x^4+a\right )}+\frac {7\,\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}}{{\left (-a\right )}^{1/8}}\right )}{16\,{\left (-a\right )}^{15/8}\,c^{1/8}}-\frac {\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}\,1{}\mathrm {i}}{{\left (-a\right )}^{1/8}}\right )\,7{}\mathrm {i}}{16\,{\left (-a\right )}^{15/8}\,c^{1/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (\frac {7}{32}+\frac {7}{32}{}\mathrm {i}\right )}{{\left (-a\right )}^{15/8}\,c^{1/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (\frac {7}{32}-\frac {7}{32}{}\mathrm {i}\right )}{{\left (-a\right )}^{15/8}\,c^{1/8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*(a + c*x^4)^2),x)

[Out]

x^(1/2)/(4*a*(a + c*x^4)) + (7*atan((c^(1/8)*x^(1/2))/(-a)^(1/8)))/(16*(-a)^(15/8)*c^(1/8)) - (atan((c^(1/8)*x
^(1/2)*1i)/(-a)^(1/8))*7i)/(16*(-a)^(15/8)*c^(1/8)) + (2^(1/2)*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 - 1i/2))/(-a
)^(1/8))*(7/32 + 7i/32))/((-a)^(15/8)*c^(1/8)) + (2^(1/2)*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 + 1i/2))/(-a)^(1/
8))*(7/32 - 7i/32))/((-a)^(15/8)*c^(1/8))

________________________________________________________________________________________